Marking 20 years
of bold journalism,
reader supported.
News
Energy
Environment
Urban Planning + Architecture

Renewable Electricity Is Coming on Strong

BC and all of Cascadia could move off fossil fuels, say new models. Acting fast is key, say experts.

Peter Fairley 19 Apr 2021TheTyee.ca

Peter Fairley is an award-winning journalist based in Victoria and San Francisco, whose writing has appeared in Scientific American, NewScientist, Hakai Magazine, Technology Review, the Atlantic, Nature and elsewhere.

[Editor’s note: This is the latest in a year-long occasional series of articles produced by InvestigateWest in partnership with The Tyee and other news organizations exploring what it will take to shift the Cascadia region to a zero-carbon economy, and is supported in part by the Fund for Investigative Journalism.]

Fifty years ago, a gasoline company’s TV ads showed an aging wooden windmill. As the wind died, it slowed to stillness. The ad asked: "But what do you do when the wind stops?” For the next several decades, fossil fuel providers and big utilities continued to denigrate renewable energy. Even the U.S. Energy Department deemed renewables "too rare, too diffuse, too distant, too uncertain and too ill-timed” to meaningfully contribute, as a top agency analyst put it in 2005.

Today we know that's not true, especially in British Columbia, Washington and Oregon.

New research shows we could be collectively poised to pioneer a climate-friendly energy future for the globe — that renewable electricity can not only move Cascadia off of fossil fuels, but do so at an affordable price while creating some jobs along the way.

After decades of disinformation, this may sound like a wishful vision. But building a cleaner and more equitable economy — and doing so in just a few decades to head off the worst effects of climate change — is backed by a growing body of regional and international research.

Getting off fossil fuels is “feasible, necessary… and not very expensive” when compared to the earnings of the overall economy, said Jeffrey Sachs, an economist and global development expert at Columbia University.

Much of the confidence about the price tag comes down to this: Innovation and mass production have made wind and solar power installations cheaper than most fossil-fuelled power plants and today's fastest-growing source of energy worldwide. The key to moving Cascadia's economies away from fossil fuels, according to the latest research, is building more to make renewable electricity our go-to “fuel.”

However, doing that in time to help head off a cascading climatic crisis by mid-century means the region must take major steps in the next decade to speed the transition, researchers say. And that will require social buy-in.

The new research highlights three mutually supporting strategies that squeeze out fossil fuels:

Recent studies in B.C. and Washington state, and underway for Oregon, point to efficiency and electrification as the most cost-effective route to slashing emissions while maintaining lifestyles and maximizing jobs. A recent National Academies of Science study reached the same conclusion, calling electrification the core strategy for an equitable and economically advantageous energy transition.

However, technologies don’t emerge in a vacuum. The social and economic adjustments required by the wholesale shift from fossil fuels that belch climate-warming carbon emissions to renewable power can still make or break decarbonization, according to Jim Williams, a University of San Francisco energy expert whose simulation software tools have guided many national and regional energy plans, including two new U.S.-wide studies, a December 2020 analysis for Washington state and another in process for Oregon.

Williams points to vital actions that are liable to rile up those who lose money in the deal. Steps like letting trees grow many decades older before they are cut down, so they can suck up more carbon dioxide — which means forgoing quicker profits from selling timber. Or convincing rural communities and conservationists that they should accept power-transmission lines crossing farms and forests.

“It’s those kinds of policy questions and social acceptance questions that are the big challenges,” said Williams.

Washington, Oregon and B.C. already mandate growing supplies of renewable power and help cover the added cost of some electric equipment. These include battery-powered cars, SUVs and pickups on the road. Heat pumps — air conditioners that run in reverse to push heat into a building — can replace furnaces. And, at industrial sites, electric machines can take the place of older mechanical systems, cutting costs and boosting reliability.

As these options drop in price they are weakening reliance on fossil fuels — even among professional chefs who’ve long sworn by cooking with gas (see sidebar: Cooking quick, clean and carbon-free).

"For each of the things that we enjoy and we need, there’s a pathway to do that without producing any greenhouse gas emissions,” said Jotham Peters, managing partner for Vancouver-based energy analysis firm Navius Research, whose clients include the B.C. government.

What the modelling tells us

Key to decarbonization planning for Cascadia are computer simulations of future conditions known as models. These projections take electrification and other options and run with them. Researchers run dozens of simulated potential future energy scenarios for a given region, tinkering with different variables: How much will energy demand grow? What happens if we can get 80 per cent of people into electric cars? What if it’s only 50 per cent? And so on.

Accelerating the transition requires large investments, this modelling shows. Plugging in millions of vehicles and heat pumps demands both brawnier and more flexible power systems, including more power lines and other infrastructure that communities often oppose. That demands both stronger policies and public acceptance. It means training and apprenticeships for the trades that must retrofit homes, and ensuring that all communities benefit — especially those disproportionately suffering from energy-related pollution in the fossil fuel era.

Consensus is imperative, but the new studies are bound to spark controversy. Because, while affordable, decarbonization is not free.

582px version of MeikleWindFarm.jpg
The Meikle Wind Project in BC’s Peace River region, the province’s largest, with 61 turbines producing 184.6 MW of electricity, went online in 2017. Photo: Pattern Development.

Projections for British Columbia and Washington suggest that decarbonizing Cascadia will spur extra job-stimulating growth. But the benefits and relatively low net cost mask a large swing in spending that will create winners and losers, and without policies to protect disadvantaged communities from potential energy cost increases, could leave some behind.

By 2030, the path to decarbonization shows Washingtonians buying about $5 billion less worth of natural gas, coal and petroleum products, while putting even more dollars toward cleaner vehicles and homes. No surprise then that oil and gas interests are attacking the new research.

And the research shows a likely economic speed bump around 2030. Economic growth would slow due to increased energy costs as economies race to make a sharp turn toward pollution reductions after nearly a decade of rising greenhouse gas emissions.

"Meeting that 2030 target is tough and I think it took everybody a little bit by surprise,” said Nancy Hirsh, executive director of the Seattle-based NW Energy Coalition, and co-chair of a state panel that shaped Washington's recent energy supply planning.

But that’s not cause to ease up. Wait longer, says Hirsh, and the price will only rise.

Charging up

What most drives Cascadia's energy models toward electrification is the dropping cost of renewable electricity.

Take solar energy. In 2010, no large power system in the world got more than three per cent of its electricity from solar. But over the past decade, solar energy’s cost fell more than 80 per cent, and by last year it was delivering over nine per cent of Germany’s electricity and over 19 per cent of California’s.

Government mandates and incentives helped get the trend started. Once prohibitively expensive, solar’s price now beats nuclear, coal and gas-fired power, and it’s expected to keep getting cheaper. The same goes for wind power, whose jumbo jet-sized composite blades bear no resemblance to the rickety machines once mocked by Big Oil.

In contrast, cleaning up gas- or coal-fired power plants by equipping them to capture their carbon pollution remains expensive even after decades of research and development and government incentives. Cost overruns and mechanical failures recently shuttered the world’s largest “low-carbon” coal-fired power plant in Texas after less than four years of operation.

PetraNovaCoalPlantTexas.jpg
Retrofits enabled this coal-fired plant in Texas to capture some of its carbon dioxide pollution, which was then injected into aging oil wells to revive production. But problems made the plant’s coal-fired power — which is being priced out by renewable energy — even less competitive and it was shut down after three years in 2020. Photo by NRG Energy.

Innovation and incentives are also making equipment that plugs into the grid cheaper. Electric options are good and getting better with a push from governments and a self-reinforcing cycle of performance improvement, mass production and increased demand.

Battery advances and cost cuts over the past decade have made owning an electric car cheaper, fuel included, than conventional cars. Electric heat pumps may be the next electric wave. They’re three to four times more efficient than electric baseboard heaters, save money over natural gas in most new homes, and work in Cascadia’s coldest zones.

Merran Smith, executive director of the Vancouver-based non-profit Clean Energy Canada, says that — as with electric cars five years ago — people don’t realize how much heat pumps have improved. "Heat pumps used to be big huge noisy things,” said Smith. “Now they’re a fraction of the size, they’re quiet and efficient.”

Electrifying certain industrial processes can also cut greenhouse gases at low cost. Surprisingly, even oil and gas drilling rigs and pipeline compressors can be converted to electric. Provincial utility BC Hydro is building new transmission lines to meet anticipated power demand from electrification of the fracking fields in northeastern British Columbia that supply much of Cascadia’s natural gas.

Simulating low-carbon living

The computer simulation tools guiding energy and climate strategies, unlike previous models that looked at individual sectors, take an economy-wide view. Planners can repeatedly run scenarios through sophisticated software, tinkering with their assumptions each time to answer cross-cutting questions such as: Should the limited supply of waste wood from forestry that can be sustainably removed from forests be burned in power plants? Or is it more valuable converted to biofuel for airplanes that can’t plug into the grid?

Evolved Energy Research, a San Francisco-based firm, analyzed the situation in Washington. Its algorithms are tuned using data about energy production and use today — down to the number and types of furnaces, stovetops or vehicles. It has expert assessments of future costs for equipment and fuels. And it knows the state’s mandated emissions targets.

Researchers run the model myriad times, simulating decisions about equipment and fuel purchases — such as whether restaurants stick with gas or switch to electric induction "burners" as their gas stoves wear out. The model finds the most cost-effective choices by homes and businesses that meet the state’s climate goals.

851px version of ElectricBurners.jpeg
For Seattle wine bar Artusi, going with electric induction cooktops meant they could squeeze more tables into a tight, comfortable space. Standard burners cost less but would have required noisy, pricey fume hoods and fans to suck out the pollutants. For more, see sidebar. Photo: InvestigateWest.

Rather than accepting that optimal scenario and calling it a day, modellers account for uncertainty in their estimates of future costs by throwing in various additional constraints and rerunning the model.

That probing shows that longer reliance on climate-warming natural gas and petroleum fuels increases costs. In fact, all of the climate-protecting scenarios achieve Washington’s goals at relatively low cost, compared to the state's historic spending on energy.

The end result of these scenarios are net-zero carbon emissions in 2050, in which a small amount of emissions remaining are offset by rebounding forests or equipment that scrubs CO2 from the air.

But the seeds of that transformation must be sown by 2030. The scenarios identify common strategies that the state can pursue with low risk of future regrets.

One no brainer is to rapidly add wind and solar power to wring out CO2 emissions from Washington’s power sector. The projections end coal-fired power by 2025, as required by law, but also show that, with grid upgrades, gas-fired power plants that produce greenhouse gas emissions can stay turned off most of the time. That delivers about 16.2 million of the 44.8 million metric tons of CO2 emissions cut required by 2030 under state law.

All of the Washington scenarios also jack up electricity consumption to power cars and heating. By 2050, Washington homes and businesses would draw more than twice as much power from the grid as they did last year, meaning climate-friendly electricity is displacing climate-unfriendly gasoline, diesel fuel and natural gas. In the optimal case, electricity meets 98 per cent of transport energy in 2050, and over 80 per cent of building energy use.

By 2050, the high-electrification scenarios would create over 60,000 extra jobs across the state, as replacing old and inefficient equipment and construction of renewable power plants stimulates economic growth, according to projections from Washington, D.C.-based FTI Consulting. Scenarios with less electrification require more low-carbon fuels that cut emissions at higher cost, and thus create 15,000 to 35,000 fewer jobs.

Much of the new employment comes in middle-class positions — including about half of the total in construction — leading to big boosts in employment income. Washingtonians earn over $7 billion more in 2050 under the high-electrification scenarios, compared to a little over $5 billion if buildings stick with gas heating through 2050 and less than $2 billion with extra transportation fuels.

Rocketing to 2030

Evolved Energy's electrification-heavy decarbonization pathways for Washington dovetail with a growing body of international research, such as that National Academy of Sciences report and a major U.S. decarbonization study led by Princeton University. (See Grist’s 100 per cent Clean Energy video for a popularized view of similar pathways to slash U.S. carbon emissions, informed by Princeton modeller Jesse Jenkins.)

SolarFarmTeckResources.jpg
BC’s largest solar farm is a converted hard-rock mine owned by Teck Resources outside the city of Kimberly. The conversion was the idea of Vancouver non-profit EcoSmart. New modelling shows meeting BC’s electrical needs and emissions targets will require adding wind and solar plants faster than the province expected. Photo: City of Kimberly.

Washington’s projected future also broadly matches other research in Cascadia. Extensive modelling for B.C. by Navius Research shows electrification carrying the load.

Brianne Riehl, an environmental policy researcher and Navius’ communications manager, notes that the firm’s recent Canada-wide study with 62 different scenarios identified electrification as British Columbia's primary carbon-cutter. As Navius described the road forward for B.C.’s provincially-owned utility, BC Hydro, last year: “The results do not show a future where other potential low-(greenhouse gas) energy pathways out-compete electricity.”

Electrification even sweeps sectors that use British Columbia’s cheap home-drilled natural gas. Peters said that Navius’ model taps electrification for the "vast majority" of predicted emissions reductions from buildings, for example.

And its modelling foresees large-scale electrification of B.C.’s gas fields and the gas liquefaction plants under construction on the coast to ship liquified natural gas to Asia, which currently are fuelled by gas itself.

The challenge is accelerating these transitions. Action by 2030 is needed across Cascadia to deliver on societal demand to fight climate change and to lay the tracks for the difficult, long-term task of squeezing out nearly all carbon emissions a few decades later.

In 2030, Evolved Energy’s optimal case for Washington foresees sales of electric cars, SUVs and pickups roaring from 7.3 per cent of light-duty vehicle sales in 2020 to 85.2 per cent in 2030. In that year’s simulation, Washingtonians buy more than one million electric vehicles and purchase 21 per cent less gasoline and diesel fuel.

That, along with growing electrification of buses, buildings and more, requires infrastructure such as charging stations, some quick growth in electricity generation and power lines to carry it. In Oregon and Washington, such investments may catch a tailwind if Congress backs President Biden’s $2-trillion infrastructure package. But building transmission lines requires tough negotiations with affected communities, which can be time consuming.

Revving up in B.C. likely means adding wind and solar plants faster than the province expected. Unpublished province-level findings from Navius’ most recent Canada-wide modelling found that electricity demand in British Columbia could increase by up to 30 per cent by 2030.

BC Hydro has high hopes for its Site C hydropower project, which is under construction but struggling to overcome cost overruns, geotechnical challenges and opposition from First Nations. But it may provide only one-third of the new power required.

Washington’s modelling points to an additional need for 2030: a big jump in supply for cleaner fuels. These would replace fossil fuels that drive heavy vehicles such as ships and airplanes and power industrial processes such as cement and steel foundries. These uses require a more intense energy source than electricity. (More on those fuels in next week’s instalment of Getting to Zero.)

Overall, both studies suggest Cascadia can afford to transition to a low-carbon economy. Navius figures decarbonization will slow annual economic growth in British Columbia in 2030 by about a tenth, trimming it from a projected two per cent to 1.8 per cent. Economic analysis for Washington state by FTI Consulting also projected slower growth in the late 2020s and early 2030s, when extra energy costs are at their highest. It projects 10,000 to 15,000 fewer jobs to be created in Washington relative to the climate-be-damned growth scenario. The state’s current employment is about 3.3. million.

A chance to rebrand BC

Burning less gasoline, diesel and natural gas produces cleaner air — something that’s not factored into most economic forecasting, including FTI’s costing for Washington. The cost of decarbonization in 2030 looks even more affordable when one considers avoided air and water pollution from burning fossil fuels, which studies show will reduce illness, lost work and school days and premature deaths.

Avoiding climate damage, meanwhile, would pay even larger dividends in the long run. Scientists expect action by Cascadia to help slow impacts of climate change, reducing future costs for damages to property and infrastructure from megafires, larger storms and sea level rise.

RioTintoSmelting.jpg
Alcan’s Rio Tinto smelting operations in Kitimat, BC are hydro-powered. Companies like Tesla and BMW are looking for low-carbon aluminum, and the province has a competitive advantage. Photo by Darryl Dyck, the Canadian Press.

For Smith at Clean Energy Canada, electrifying is also a potent business opportunity for Cascadia. She urges British Columbia’s government and industries to forsake a dying dream of growing LNG exports and to instead stake the future on decarbonizing the province's exports.

Smith points to B.C.'s aluminum, which, thanks to B.C.’s near-total reliance on hydropower, is gaining advantage as one of the world’s least carbon-intensive suppliers.

Companies like Tesla and BMW are looking for low-carbon aluminum, notes Smith: “I don’t think that most British Columbians realize that we have a nearly 100-per-cent emissions-free electricity grid, nor what a competitive advantage it is.”

With more renewable power, the province can decarbonize all of its natural resource exports, including forest products and other metals such as copper, cobalt and nickel. "Branding B.C. that way, rather than as a fossil fuel exporter, will attract more investment,” she said.

Washington and Oregon could build on toeholds in clean-energy manufacturing, such as the Daimler plant that makes electric trucks in Portland and the eCascadia electric semi prototypes that Freightliner is assembling in Redmond, Oregon.

But not everyone embraces an electrified future. Fossil fuel interests in Washington have called the modelling biased and are raising the spectre of electrification-driven blackouts.

When asked to comment on the modelling for Washington, Jessica Spiegel, northwest region director for the Western States Petroleum Association, issued a statement saying that, “an all-electric economy is not a viable alternative.”

Natural gas interests are also pushing back. The Northwest Gas Association and other interests joined WSPA in a joint December 2020 letter attacking the modelling as “insufficient” and calling the state's endorsement of electrification a result of bias: “Using this endpoint as justification, the strategy then makes determinations about the best path to get there,” they wrote.

Resistance to action toward accelerated electrification has been on full display in recent months as Washington’s legislature considers an array of policies to encourage or mandate a transition to cleaner energy. One proposal backed by Washington Gov. Jay Inslee to restrict delivery of gas to new buildings by 2030 died early, under assault from the gas industry and some unions.

During a hearing on the Better Homes & Clean Buildings Bill, a lobbyist for Puget Sound Energy, a suburban Seattle-based investor-owned utility that sells power and is also Washington’s largest natural gas supplier, raised the threat of energy shortfalls, citing a 2019 study suggesting that power demand could soon outstrip supply as the region’s coal-fired power plants shut down.

Environmental advocates point out that oil and gas producers and distributors have a vested interest in opposing rapid reductions in petroleum and natural gas consumption. They also note that BP, an oil and gas major that operates Washington’s largest refinery, dropped its membership in WSPA over the group’s lobbying to block climate action.

Grid experts say the best way to ensure reliability is to get cracking on power system upgrades needed to support a larger supply of wind and solar power. Patrick Oshie, an energy policy expert and Washington’s representative on a regional power grid planning group, said Evolved Energy’s modelling demonstrated that the state “can progress to a zero carbon future” and indicated a "need for early action.”

Spencer Gray, the Portland-based executive director for the Northwest & Intermountain Power Producers Coalition, which represents many renewable energy developers, says ensuring Cascadia’s power supply is “solvable" without slowing decarbonization. What’s crucial, he says, is to strengthen the grid.

Gray and Oshie are two of the many experts working toward creation of a regional power market for the Western grid, which interconnects all of the electrical systems in the U.S. and Canada west of the Rockies. They are also working to accelerate expansion of power lines so that Cascadia and its neighbors can access more low-cost renewable energy, such as the excellent wind resources in Montana.

“Five to 10 years from now is when we need it,” said Gray. "We need to start getting the stuff financed and sited now.”


This article is the latest in the series Getting to Zero: Decarbonizing Cascadia, a collaboration led by InvestigateWest that includes The Tyee and other news outlets in Washington and Oregon.  [Tyee]

  • Share:

Facts matter. Get The Tyee's in-depth journalism delivered to your inbox for free

Tyee Commenting Guidelines

Comments that violate guidelines risk being deleted, and violations may result in a temporary or permanent user ban. Maintain the spirit of good conversation to stay in the discussion.
*Please note The Tyee is not a forum for spreading misinformation about COVID-19, denying its existence or minimizing its risk to public health.

Do:

  • Be thoughtful about how your words may affect the communities you are addressing. Language matters
  • Challenge arguments, not commenters
  • Flag trolls and guideline violations
  • Treat all with respect and curiosity, learn from differences of opinion
  • Verify facts, debunk rumours, point out logical fallacies
  • Add context and background
  • Note typos and reporting blind spots
  • Stay on topic

Do not:

  • Use sexist, classist, racist, homophobic or transphobic language
  • Ridicule, misgender, bully, threaten, name call, troll or wish harm on others
  • Personally attack authors or contributors
  • Spread misinformation or perpetuate conspiracies
  • Libel, defame or publish falsehoods
  • Attempt to guess other commenters’ real-life identities
  • Post links without providing context

LATEST STORIES

The Barometer

Do You Think Naheed Nenshi Will Win the Alberta NDP Leadership Race?

Take this week's poll